Đặt \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=k\)
=> \(\left\{{}\begin{matrix}x-1=2k\\y-2=3k\\z-3=4k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=3k+2\\z=4k+3\end{matrix}\right.\)
Do: x-2y+3z = 14
<=> 2k+1 - 2(3k+2) + 3(4k+3) = 14
<=> 2k+1 - 6k-4 + 12k+9 = 14
<=> 8k + 6 = 14
<=> 8k = 8
<=> k = 1
<=> \(\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
\(\Leftrightarrow\dfrac{x-1}{2}=\dfrac{2\left(y-2\right)}{6}=\dfrac{3\left(z-3\right)}{12}\)
\(\Leftrightarrow\dfrac{x-1}{2}=\dfrac{2y-2}{6}=\dfrac{3z-3}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{2y-2}{6}=\dfrac{3z-3}{12}\)
\(=\dfrac{x-1-2y-2-3z-3}{2-6+12}\)
\(=\dfrac{14-6}{8}=1\)
Áp dụng tính