ĐKXĐ : \(x-1\ge0\)
=> \(x\ge1\)
Ta có : \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=5\)
<=> \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=5\)
<=> \(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=5\)
<=> \(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=5\)
<=> \(|\sqrt{x-1}-1|+|\sqrt{x-1}+1|=5\)
<=> \(|\sqrt{x-1}-1|+\sqrt{x-1}+1=5\) ( 1 )
+, TH 1 : \(\sqrt{x-1}-1\ge0\) <=> \(x\ge2\) . Khi đó phương trình (1) được :
\(\sqrt{x-1}-1+\sqrt{x-1}+1=5\)
<=> \(2\sqrt{x-1}=5\)
<=> \(\sqrt{x-1}=2,5\)
<=> \(x-1=6,25\)
<=> \(x=7,25\) ( TM )
TH 2 : \(\sqrt{x-1}-1\le0\) <=> \(x\le2\) . Khi đó phương trình (1) được :
\(1-\sqrt{x-1}+\sqrt{x-1}+1=5\)
<=> \(2=5\) ( Vô lý )
Vậy phương trình trên có nghiệm duy nhất là x = 7,25 .