Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đạt Trần Tiến

các bạn cho mình hỏi lớp 9 thì được dùng BĐT thức \(\frac{a^2}{b}+\frac{c^2}{d}+\frac{e^2}{f^2}\ge \frac{(a+c+e)^2 }{b+d+f} \)được ko hay phải chững minh

Lightning Farron
26 tháng 10 2017 lúc 23:38

Lại gặp đồng râm rồi t c~ ở B.Ninh :_. Theo mk biết thì cái này dùng luôn được nhé vì nó chỉ là biến thể của BĐT Cauchy-Schwarz thôi mà c/m nó cũng dễ. Mk cm dạng tổng quát của nó luôn nhé

\(\left\{{}\begin{matrix}a_1;a_2;....;a_n\\b_1;b_2;....;b_n\end{matrix}\right.\)\(>0\). CMR \(\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a_n^2}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\right)\left(b_1+b_2+...+b_2\right)\ge\left(a_1+a_2+...+a_n\right)^2\)

\(\Leftrightarrow\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{\left(b_1+b_2+...+b_2\right)}\) *đúng*

Phan Anh Thư
28 tháng 10 2017 lúc 11:58

Dc chứ bạn đấy là bđt cơ bản mà
Cauchy -schwarz hay còn gọi là bunhia dạng phân số :)