C=4 + 42 + 43 +....+ 4n
=> C= \(4^1+4^2+4^3+...+4^n\)
=>4C = 4. ( 41+42+43+...+4n)
=>4C = 42+43+44+....+4n+1
=>4C-C = (42+43+44+....+4n+1)-(41+42+43+....+4n)
=>3C=4n+1-41
=>3C=4n+1-4
=>C=\(\frac{4^{n+1}-4}{3}\)
\(C=4+4^2+4^3+...+4^n\)
\(\Rightarrow C=4^2+4^3+4^4+...+4^{n+1}\)
\(\Rightarrow C=4^2+4^3+4^4+...+4^{n+1}\)
\(\Rightarrow4C-C=4^{n+1}-4\)
\(\Rightarrow3C=4^{n+1}-4^1\)
\(\Rightarrow C=\frac{4^{n+1}-4^1}{3}\)