\(Tacó\)
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
...
\(\dfrac{1}{999}>\dfrac{1}{200}\)
Do đó :\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{999}+\dfrac{1}{200}>\dfrac{1}{200}+...+\dfrac{1}{200}=100.\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Ta lại có:
\(\dfrac{1}{102}< \dfrac{1}{101}\)
\(\dfrac{1}{103}< \dfrac{1}{101}\)
...
\(\dfrac{1}{200}< \dfrac{1}{101}\)
Do đó : \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{1}{101}.100=\dfrac{100}{101}< 1\)Vậy ...( theo tớ , cậu nên đánh dấu (1) và (2) rồi suy ra ) .. khẳng định trên , học tốt