\(\left(P\right):y=x^2+bx+c\) đi qua điểm K(0;2) =>c=2
theo bài ra: \(\dfrac{-\Delta}{4a}=1\Leftrightarrow4ac-b^2=4\Leftrightarrow\left[{}\begin{matrix}b=2\left(tm\right)\\b=-2\left(loại\right)\end{matrix}\right.\)
=>a+b=3
\(\left(P\right):y=x^2+bx+c\) đi qua điểm K(0;2) =>c=2
theo bài ra: \(\dfrac{-\Delta}{4a}=1\Leftrightarrow4ac-b^2=4\Leftrightarrow\left[{}\begin{matrix}b=2\left(tm\right)\\b=-2\left(loại\right)\end{matrix}\right.\)
=>a+b=3
cho (P): y =2x +bx +c. Tìm các số b,c để đồ thị là một parabol thỏa:
a) Đỉnh A(-1;-2)
b) Đi qua hai điểm M(0;-1) và N(4;0).
c) Đi qua M(1;-2) và có hoành độ đỉnh là 2.
đ) Đi qua A(0;4) và có trục đối xứng là đường thẳng x = 1.
Cho (P) : y= x^2 + bx+ c. Tìm các số b,c để đồ thị là một parabol thỏa:
a) Đỉnh A(1;2)
b) Đỉnh I(-3;1)
c) Đi qua điểm M(1;-1) và có hoành độ đỉnh bằng 4.
d) Đi qua M(1;2) và có hoành độ đỉnh là 2.
e) Đi qua A(3;3) và có trục đối xứng là đường thẳng x = 1.
Cho (P): y = ax° + bx + c. Tìm các số a,b,c để đồ thị là một parabol thỏa:
a) Đi qua A(0;1), B(1;2), C(3;-1)
b) Đi qua ba điểm M(0;-1) và N(1;0) và P(2;3).
c) Đi qua M(1;-2), N(0;4), P(2;1)
d) Đi qua A(3;1), B(-1;2) và có hoành độ đỉnh bằng 2.
a) Lập bảng biến thiên và vẽ đồ thị hàm số (P): y=-x^2 +2x
b) Xác định parabol (P) y= ax^2 +bx+c biết (P) cắt trục tung tại điểm có tung độ =1 và có đỉnh I ( 2;-3)
Tìm các tham số b,c sao cho hàm số y=x²+bx+c có trục đối xứng là x=2 và đồ thị của nó cắt trục tung tại điểm có tung độ là 6?
Xác định parabol y= ax2 + bx + c, (a#0), biết rằng đỉnh của parabol đó có tung độ bằng -25, đồng thời parabol đó cắt trục hoành tại hai điểm A(-4;0) và B(6;0).
Xác định parabol \(y=ax^2+bx+c\)
a/ Có trục đối xứng \(x=\dfrac{5}{6}\) , cắt trục tung tại điểm A(0;2) và đi qua B(2;4)
b/ Đi qua A(1;-4) và tiếp xúc với trục hoành tại x = 3
Xác định hàm số y= ax+ b biết đồ thị của nó:
a/đi qua điểm A(3;-4) và cắt trục tung tại điểm có tung độ bằng 2
b/cắt trục hoành tại điểm có hoành độ bằng -2 và // với đường thẳng có phương trình y=-4x + 4
c/ đi qua giao điểm của đường thẳng y=3x+6 với trục hoành và tạo với hai trục tọa độ 1 tam giác có diện tích =căn 6
Cho (P) y= x^2 + bx +c a) xác định P biết P nhận I(1;2) y= ax^2 +bx+c làm đỉnh. Xét sự biến thiên và vẽ đồ thị P b) xác định P biết P cắt trục tung tại điểm có tung độ=2 và nhận đồ thị x=-1 làm trục đối xứng