\(1^2+2^2+3^2+...+50^2=42925\)
\(\Rightarrow2^2\left(1^2+2^2+3^2+....+50^2\right)=42925.2^2=171700\)
\(\Rightarrow2^2+4^2+6^2+...+100^2=171700\)
\(S=2^2+4^2+6^2+...+100^2\\ =1^2.2^2+2^2.3^2+...+2^2.50^2\\ =2^2\left(1^2+2^2+3^2+...+50^2\right)\\ =4.42925=171700\)