Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}\\ \Rightarrow B=\frac{a+b+c}{3a+3b+3c}\\ B=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy \(B=\frac{1}{3}\)
Ta có:
\(B=\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3.\left(a+b+c\right)}=\frac{1}{3}.\)
\(\Rightarrow B=\frac{1}{3}.\)
Vậy \(B=\frac{1}{3}.\)
Chúc bạn học tốt!