§3. Phương trình và hệ phương trình bậc nhất nhiều ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Trần

\(\begin{cases} 4xy +4(x^2+y^2)+\frac{3}{(x+y)^2}=7\\2x+\frac{1}{x+y}=1\end{cases}\)

Hung nguyen
1 tháng 12 2017 lúc 11:14

\(\left\{{}\begin{matrix}4xy+4\left(x^2+y^2\right)+\dfrac{3}{\left(x+y\right)^2}=7\\2x+\dfrac{1}{x+y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{3}{\left(x+y\right)^2}=7\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left[\left(x+y\right)+\dfrac{1}{x+y}\right]^2+\left(x-y\right)^2=13\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}=a\\x-y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3a^2+b^2=13\\a+b=1\end{matrix}\right.\)

Đơn giản rồi nhé


Các câu hỏi tương tự
Hà Trần
Xem chi tiết
Phan Trần Thảo Nhi
Xem chi tiết
camila admire
Xem chi tiết
Hà Anh Trần
Xem chi tiết
Hà Trần
Xem chi tiết
Emilia Nguyen
Xem chi tiết
thuyngan2
Xem chi tiết
Như Quỳnh
Xem chi tiết
Hà Trần
Xem chi tiết