b)\(\dfrac{6}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{6}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left[x+3+1\right]}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+3\right)}\)\(\left\{{}\begin{matrix}x\ne\left\{+-3\right\}\\6=\left(x-3\right)\left(x+4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne3\\x^2+x+\dfrac{1}{4}=18+\dfrac{1}{4}=\dfrac{73}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne+-3\\\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{\sqrt{73}}{2}\right)^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=\dfrac{-1-\sqrt{73}}{2}\\x=\dfrac{-1+\sqrt{73}}{2}\end{matrix}\right.\)