a: Ta có: \(\left(2^{17}+17^2\right)\cdot\left(9^{15}-3^{15}\right)\cdot\left(2^4-4^2\right)\)
\(=\left(2^{17}+17^2\right)\cdot\left(9^{15}-3^{15}\right)\cdot\left(16-16\right)\)
=0
b: Ta có: \(\dfrac{8^{2017}-8^{2015}}{8^{2104}\cdot8}\)
\(=\dfrac{8^{2015}\cdot\left(8^2-1\right)}{8^{2105}}\)
\(=\dfrac{1\cdot63}{8^{90}}\)+
c: Ta có: \(\left(1^3+2^3+3^4+4^5\right)\cdot\left(1^3+2^3+3^3+4^3\right)\cdot\left(3^8-81^2\right)\)
\(=\left(1^3+2^3+3^4+4^5\right)\cdot\left(1^3+2^3+3^3+4^3\right)\cdot\left(3^8-3^8\right)\)
=0
d: Ta có: \(\left(2^8+8^3\right):\left(2^5\cdot2^3\right)\)
\(=\dfrac{2^8+2^9}{2^8}\)
=3