Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
2) x4 + 48x2 - 49 = 0
⇔ x4 - x2 + 49x2 - 49 = 0
⇔ x2(x2 - 1) + 49(x2 - 1) = 0
⇔ (x2 - 1)(x2 + 49) = 0
Vì x2 \(\ge0\) nên x2 + 49 \(\ge\) 49 suy ra x2 - 1 = 0
⇒ x = \(\pm1\)
Vậy x = \(\pm1\)
câu 3) bạn tách \(5x^2=x^2+4x^2\)
xong giải pt, cuối cùng ra x^2 = số âm, bờ loại, vậy là pt vô nghiệm
5) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
Đặt \(x^2+x+1=a\) Ta được:
\(a.\left(a+1\right)=12\)
\(\Leftrightarrow a^2+a-12=0\)
\(\Leftrightarrow\left(a^2+4a\right)-\left(3a+12\right)=0\)
\(\Leftrightarrow a\left(a+4\right)-3\left(a+4\right)=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=3\end{matrix}\right.\)
* \(a=-4\)
\(\Leftrightarrow x^2+x+1=-4\)
\(\Leftrightarrow x^2+x+5=0\) ( vô nghiệm, loại )
* \(a=3\)
\(\Leftrightarrow x^2+x+1=3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{1;-2\right\}\)