Đề bài thiếu 1 dữ liệu nữa (ví dụ SA vuông góc mặt đáy)
Đề bài thiếu 1 dữ liệu nữa (ví dụ SA vuông góc mặt đáy)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Tính thể tích và diện tích xung quanh của chóp, biết:
a. Góc trong SB và đáy bằng 45°
b. Góc trong (SCD) và đáy bằng 60°
Cho hình chóp đều S.ABCD có đáy bằng a góc giữa mặt bên SCD và mặt đáy ABCD bằng 60 độ Tính thể tích S.ABCD theo a
Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a. Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AD. Góc giữa SC và (ABCD) bằng 60° . Gọi M là trung điểm SB . Tính thể tích khối chóp S.ACM
Bài 1: Cho hình chóp S.ABC, biết SA vuông góc với đáy, SA=a\(\sqrt{3}\). Tính thể tích?
a. Đáy là △ đều cạnh a
b. Đáy là △ vuông cân tại B, AB=a
Bài 2: Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a. Tính Thể tích, biết:
a. Đường cao=5a
b. Cạnh bên =a\(\sqrt{5}\)
C. Góc trong cạnh bên và đáy = 30°
d. góc trong mặt bên và đáy = 60°
cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với đáy một góc 60°. Thể tích của hình chóp đều đó là
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, góc BAD=120. Mặt bên (SAB) có SA=a, SB= a\(\sqrt{3}\) và vuông góc với mặt phẳng đáy. Gọi G là trọng tâm tam giác SCD. Tính thể tích hình chóp SABCD và khoảng cách từ G đến mặt phẳng (SAB)
Cho hình chóp SABCD có SA vuông góc với đáy. Tính thể tích khối chóp SABC biết: a. Tam giác ABC đều cạnh a, góc giữa SB và đáy là 30°. b. Tam giác ABC vuông tại A, AB=a, SA=5a; góc giữa SC và đáy là 60°
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , AB=BC=a, AD=2a. Cạnh bên SA vuông góc với mặt phẳng (ABCD) , góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ .Tính theo a thể tích của khối chóp A.ABCD
cho hình chóp S.ABCD đáy là hình chữ nhật AD=2a, AB=a. Có (SAB) và (SAD) vuông góc với đáy, góc Sc và đáy bằng 30 độ. tính thể tích khối chóp