a. π < α < \(\frac{3\pi}{2}\) => cosα <0
Ta có: sin2α + cos2α = 1 => cosα = \(\frac{-\sqrt{51}}{10}\) => tanα = \(\frac{7\sqrt{51}}{51}\)
b. 0 < α < \(\frac{\pi}{2}\) => sinα > 0
Ta có: sin2α + cos2α =1 => sinα = \(\frac{3\sqrt{17}}{13}\) => tanα = \(\frac{3\sqrt{17}}{4}\)
c. \(\frac{\pi}{2}< \alpha< \pi\) => cosα <0 ; sinα > 0
Ta có: \(1+tan^2\alpha=\frac{1}{cos^2\alpha}\) => cosα = \(\frac{-7}{\sqrt{274}}\) => sinα = \(\frac{15}{\sqrt{274}}\)
d. \(\frac{3\pi}{2}< \alpha< 2\pi\) => cosα > 0 ; sinα < 0
Ta có: 1+ cot2α = \(\frac{1}{sin^2\alpha}\)=> sinα = \(\frac{-\sqrt{10}}{10}\) => cos\(\alpha\) = \(\frac{3\sqrt{10}}{10}\)
a/ \(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{51}}{10}\)
\(tana=\frac{sina}{cosa}=\frac{7\sqrt{51}}{51}\)
b/ \(0< a< \frac{\pi}{2}\Rightarrow sina>0\)
\(\Rightarrow sina=\sqrt{1-cos^2a}=\frac{3\sqrt{17}}{13}\)
\(tana=\frac{sina}{cosa}=\frac{3\sqrt{17}}{4}\)
c/ \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\frac{1}{\sqrt{1+tan^2a}}=-\frac{7}{\sqrt{274}}\)
\(sina=tana.cosa=\frac{15}{\sqrt{274}}\)
d/ \(\frac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\)
\(\Rightarrow sina=-\frac{1}{\sqrt{1+cot^2a}}=-\frac{\sqrt{10}}{10}\)
\(cosa=sina.cota=-\frac{3\sqrt{10}}{10}\)
\(tana=\frac{1}{cota}=-\frac{1}{3}\)