Bài 5: Rút gọn căn cho một số bằng phép khai phương
9> \(\sqrt{12}\) + \(\sqrt{75}\) - \(\sqrt{27}\)
10> \(\sqrt{27}\) - \(\sqrt{12}\) + \(\sqrt{75}\) + \(\sqrt{147}\)
11> \(2\sqrt{3}\) + \(\sqrt{48}\) - \(\sqrt{75}\) - \(\sqrt{243}\)
12> \(\sqrt{5+2\sqrt{6}}\) - \(\sqrt{5-2\sqrt{6}}\)
13> \(\sqrt{9-4\sqrt{5}}\) - \(\sqrt{9+\sqrt{80}}\)
14> \(\sqrt{3+2\sqrt{2}}\) _ \(\sqrt{6-4\sqrt{2}}\)
15> \(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
16> \(\sqrt{4+\sqrt{5}\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
17> (\(\sqrt{28}\) - \(2\sqrt{14}\) + \(\sqrt{7}\))\(\sqrt{7}\) + 7\(\sqrt{8}\)
18> \(\sqrt{\left(\sqrt{14}-3\sqrt{2}\right)^2}+6\sqrt{28}\)
19> \(\dfrac{1}{\sqrt{5}-2}\) + \(\dfrac{1}{\sqrt{5}+2}\)
20> \(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5-\sqrt{3}}}\) + \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
21> \(\dfrac{1}{4-3\sqrt{2}}\) _ \(\dfrac{1}{4+3\sqrt{2}}\)
22> \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)