a) \(\dfrac{x-1}{x+1}\)= \(\dfrac{1}{x-1}\)(1)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\\x+1\end{matrix}\right.\)#0 <=> \(\left\{{}\begin{matrix}x\\x\end{matrix}\right.\)# 1 và # -1
(1)<=> \(\dfrac{\left(x-1\right)^2}{\left(x^2-1\right)}\)= \(\dfrac{x+1}{\left(x^2-1\right)}\)
=> x2 - 2x + 1 = x+1
<=> x2 - 2x + 1 - x - 1 = 0
<=> x2 - 3x = 0
<=> x ( x-3 ) = 0
<=> \(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)( TM)
Vậy tập nghiệm của phương trình là S= { 0 ; 3 }
các câu còn lại là tương tự