a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\)
Vậy \(\left\{{}\begin{matrix}x=3.2=6\\y=3.5=15\end{matrix}\right.\)
b) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)
Vậy \(\left\{{}\begin{matrix}x=\left(-4\right).3=-12\\y=\left(-4\right).7=-28\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
Ta có:
\(xy=54\)
\(\Leftrightarrow2k.3k=54\)
\(\Leftrightarrow6k^2=54\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow k=\pm3\)
+ Với \(k=-3\): \(\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=3.\left(-3\right)=-9\end{matrix}\right.\)
+ Với \(k=3\): \(\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-6;-9\right);\left(6;9\right)\)
bài này áp dụng dãy tỉ số bằng nhau là ra
\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\) và x+y = 21
áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}\)= \(\dfrac{y}{5}\)=> \(\dfrac{x+y}{2+5}\) = \(\dfrac{21}{7}\) = 3
=> x = 2 => x = 3.2 = 6
y = 5 => y = 5.3 = 15
còn câu b và c tương tự câu a) (câu c đặt K rồi làm)
thôi mình làm luôn :)
b) Áp dụng tính chất dãy tỉ số bằng nhau có ;
\(\dfrac{x}{3}\)= \(\dfrac{y}{7}\)=\(\dfrac{x-y}{3-7}\)=\(\dfrac{16}{-4}\)= -4
=> x = 3 => x = 3.(-4) = -12
y= 7 => 7.(-4) = -28