a)
Ta có
\(4^{21}=\left(4^4\right)^5.4=\left(\overline{...6}\right)^5.4=\left(\overline{...6}\right).4=\left(\overline{....4}\right)\)
=> 4^21 có tận cùng là 4
b)
Ta có
\(9^{53}=\left(9^4\right)^{13}.9=\left(\overline{.....1}\right)^{13}.9=\left(\overline{.....1}\right).9=\left(\overline{....9}\right)\)
=> 9^93 có tận cùng là 9
c)
\(3^{103}=\left(3^4\right)^{25}.3^3=\left(\overline{.....1}\right)^{25}.27=\left(\overline{.....1}\right).27=\left(\overline{....7}\right)\)
=> 3^103 có tận cùng là 7
d)
\(8^{4n+1}=\left(8^4\right)^n.8=\left(\overline{....6}\right)^n.8=\left(\overline{......6}\right).8=\left(\overline{.....8}\right)\)
=> 8^4n+1 có tận cùng là 8
\(4^{21}=\left(...4\right)\)
Do: các số có tận cùng là 4 thì khi nâng lũy thừa bậc lẻ thì số tận cùng giữ nguyên.
\(9^{53}=...9\)
Do: các số có tận cùng là 9 thì khi nâng lũy thừa bậc 4n thì số tận cùng giữ nguyên.
\(3^{301}=3.3^{300}=3.\left(...1\right)=....3\)
Do: các số có tận cùng là 3 thì khi nâng lũy thừa bậc lẻ thì số tận cùng là 1.
\(8^{4n+1}=8.8^{4n}=8.\left(...6\right)=...8\)
Do: các số có tận cùng là 8 thì khi nâng lũy thừa bậc 4n thì số tận cùng là 6.