Bài 1:Tìm tập xác định của hàm số sau:
a) y=\(\frac{1-2x}{2x^2-5x+2}\)
b) y=\(\frac{x}{x-1}+\sqrt{2x+4}\)
c)y= \(\frac{\sqrt{x-2}}{x^2+2x+1}\)
d)y= \(\frac{3x+1}{x^2-x+1}\)
e) y=\(\frac{x+3}{2x^2-18}+\frac{5}{1+x^2}-2x+1\)
f) y=\(\frac{x^3-3}{\sqrt{x-2}-\sqrt{7-3x}}\)
Bài 2: Tìm m để hàm số y=\(\frac{3x+5}{x^2+3x+m-1}\)có tập xác định là D=R
a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}
b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).
Vậy tập xác định D = \([-2;+\infty)/1\)
y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)
suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm
\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)
\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)