Bài 1:
\(a\)) \(4\) và \(\sqrt{15}\)
Vì \(16>15\) nên \(\sqrt{16}>\sqrt{15}\)
\(\Rightarrow4>\sqrt{15}\)
\(b\)) \(5\) và \(\sqrt{2}+\sqrt{5}\)
Ta có: \(\left(\sqrt{2}+\sqrt{5}\right)^2=2+2\sqrt{10}+5=2\sqrt{10}+7\)
\(5^2=25\)
Suy ra: \(\left(\sqrt{2}+\sqrt{5}\right)^2-5^2=2\sqrt{10}+7-25\)
\(=2\sqrt{10}-18\)
\(=\sqrt{40}-\sqrt{324}< 0\)
Vậy \(5>\sqrt{2}+\sqrt{5}\)
1: \(c\)) Căn của 2 căn 3 và căn của 3 căn 2
Ta có: \(\sqrt{2\sqrt{3}}^4=2\sqrt{3}^2=12\)
\(\sqrt{3\sqrt{2}}^4=3\sqrt{2}^2=18\)
Vì \(12< 18\) nên \(\sqrt{2\sqrt{3}}^4< \sqrt{3\sqrt{2}}^4\)
Hay \(\sqrt{2\sqrt{3}}< \sqrt{3\sqrt{2}}\)