Lời giải:
a)
$x^{20}+x+1=x^{20}-x^2+x^2+x+1$
$=x^2(x^{18}-1)+x^2+x+1=x^2(x^9-1)(x^9+1)+(x^2+x+1)$
$=x^2(x^3-1)(x^6+x^3+1)(x^9+1)+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)(x^6+x^3+1)(x^9+1)+(x^2+x+1)$
$=(x^2+x+1)[x^2(x-1)(x^6+x^3+1)(x^9+1)+1]$
$=(x^2+x+1)(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1)$
b)
\(\frac{3x-2}{5}\geq \frac{x}{2}+0,8\Rightarrow 2(3x-2)\geq 5x+8\)
\(\Rightarrow x\geq 12(1)\)
Và:
\(1-\frac{2x-5}{6}>\frac{3-x}{4}\Rightarrow 12-2(2x-5)>3(3-x)\)
\(\Leftrightarrow 13> x(2)\)
Từ $(1);(2)\Rightarrow 12\leq x< 13$. Mà $x$ nguyên nên $x=12$