Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thị Mai Trang

Bài 1:a) Phân tích đa thức thành nhân tử:x20+x+1

b) Tìm số nguyên x thỏa mãn cả 2 bất phương trình :

\(\frac{3x-2}{5}\)\(\frac{x}{2}+0,8\)\(1-\frac{2x-5}{6}\) > \(\frac{3-x}{4}\)

Akai Haruma
13 tháng 2 2020 lúc 22:05

Lời giải:
a)

$x^{20}+x+1=x^{20}-x^2+x^2+x+1$

$=x^2(x^{18}-1)+x^2+x+1=x^2(x^9-1)(x^9+1)+(x^2+x+1)$

$=x^2(x^3-1)(x^6+x^3+1)(x^9+1)+(x^2+x+1)$

$=x^2(x-1)(x^2+x+1)(x^6+x^3+1)(x^9+1)+(x^2+x+1)$

$=(x^2+x+1)[x^2(x-1)(x^6+x^3+1)(x^9+1)+1]$

$=(x^2+x+1)(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1)$

b)

\(\frac{3x-2}{5}\geq \frac{x}{2}+0,8\Rightarrow 2(3x-2)\geq 5x+8\)

\(\Rightarrow x\geq 12(1)\)

Và:

\(1-\frac{2x-5}{6}>\frac{3-x}{4}\Rightarrow 12-2(2x-5)>3(3-x)\)

\(\Leftrightarrow 13> x(2)\)

Từ $(1);(2)\Rightarrow 12\leq x< 13$. Mà $x$ nguyên nên $x=12$

Khách vãng lai đã xóa