Cho n thuộc tập hợp số tự nhiên, n > 1. Cm f(n) = 2^(2n-1)-(3n)^2+21n-14 chia hết cho 27
Cho \(f\left(n\right)=3n^2-3n+1\), n \(\notin\) ¥*. Đặt Sn= \(f\left(1\right)+f\left(2\right)+...+f\left(n\right)\). Gọi a, b lần lượt là thương và số dư của phép chia của S2016 cho 2017; m là ước chung lớn nhất của a và b. Tính số các ước dương khác 1 của m.
cho A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}..............\frac{2n-1}{2n}\)
Chứng minh A<\(\frac{1}{\sqrt{3n+1}}\)
Cho a, b, c ∈ R, a+b=c-2 và \(ab=2c^2-3c+1\). Tìm giá trị lớn nhất của biểu thức \(P=a^2+b^2\)
cho 2 số thực a,b thỏa mãn \(a^3+b^3=1\). Tính giá trị lớn nhất của \(A=\sqrt{a}+\sqrt{b}\)
1. Tìm các chữ số a,b,c biết \(\sqrt{\overline{abc}}=\left(a+b\right)\sqrt{c}\)
2. Tìm các số nguyên dương n sao cho 2n + 2003 và 3n + 2005 là các số chính phương.
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Tính các tổng sau:
A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+.....+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
B=\(\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}\)
C=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+....+\sqrt{1+\dfrac{1}{2018^2}+\dfrac{1}{2019^2}}\)
cho 4 số thực ko âm a,b,c,d thỏa mãn a+b+c+d=1 tìm giá trị lớn nhất của biểu thức \(^{ }\)
\(a\left(b^2+c^2+d^2\right)\)