Bài 2:
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\)
\(2A=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}+\dfrac{1}{2^{2016}}\right)\)
\(2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2014}}+\dfrac{1}{2^{2015}}\)
\(2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(A=1-\dfrac{1}{2^{2016}}\)
Bài 1:
a)Trên nửa mặt phẳng bờ chứa tia \(Ox\) ta có:
\(\widehat{xOy}< \widehat{xOz}\left(50^o< 150^o\right)\)
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\) (\(Oy\) nằm giữa \(Ox\) và \(Oz\))
\(\Rightarrow50^o+\widehat{yOz}=150^o\left(\widehat{xOy}=50^o;\widehat{xOz}=150^o\left(Gt\right)\right)\)
\(\Rightarrow\widehat{yOz}=150^o-50^o=100^o\)
b)sai đề