Bài 1 : Tồn tại hay không hai số dương a và b khác nhau sao \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
Bài 2:
a)Nguời ta viết 7 số trên 1 vòng tròn. Tìm các số đó biết rằng tích của hai số bất kì cạnh nhau bằng 16
b) Hỏi như vậy vs 8 số
c) Hỏi như vậy vs n số
Bài 3 :Tìm hai số a và b biết a-b=2(a+b)=a:b
Giúp mk vs nha mấy bạn Thật nhanh nha!!!!
Bài 1 :
Ta có :
\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\Rightarrow\dfrac{b-a}{ab}=\dfrac{1}{a-b}\)
\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab.1\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\)
\(\Rightarrow-\left(a-b\right)^2=ab\)
Vì \(-\left(a-b\right)^2\le0\) với mọi a, b ko thể cùng dương
Vậy ko tồn tại 2 số dương a,b khác nhau để thõa mãn đề bài
Bài 1:
Trường hợp 1 :
Giả sử a > b > 0 \(=>\) \(\dfrac{1}{a}< \dfrac{1}{b}=>\dfrac{1}{a}-\dfrac{1}{b}< 0\) ; \(\dfrac{1}{a-b}>0\)
\(=>\dfrac{1}{a}-\dfrac{1}{b}\ne\dfrac{1}{a-b}\)
Trường hợp 2 :
Giả sử a < b \(=>\dfrac{1}{a}>\dfrac{1}{b}=>\dfrac{1}{a}-\dfrac{1}{b}>0\) ; \(\dfrac{1}{a-b}< 0\)
\(=>\dfrac{1}{a}-\dfrac{1}{b}\ne\dfrac{1}{a-b}\)
Vậy không tồn tại hai số nguyên dương a và b khác nhau sao cho \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
\(VT=\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b}{ab}-\dfrac{a}{ab}=\dfrac{b-a}{ab}\)
\(VP=\dfrac{1}{a-b}\)
\(VT\ne VP\)
\(\Leftrightarrow\)Không tồn tại 2 số dương thỏa mãn