Bài 1:
\(a.\left(-356+57\right)-\left(27-356\right)=-356+57-27+356=\left(-356+356\right)+\left(57-27\right)=30\) \(b.125.\left(-24+24.225\right)=125.\left(-24+5400\right)=125.\left(-24\right)+125.5400=-3000+675000=672000\)
\(c.26.\left(-125\right)-125.\left(-36\right)=-125.\left(26-36\right)=-125.\left(-10\right)=1250\)
Bài 2:
\(a.\left(2x-4\right)^2=0\)
\(\Rightarrow2x-4=0\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(b.\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\)
Để (x+5) chia hết cho (x+3) thì 2 phải chia hết cho (x+3)
\(\Rightarrow x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(x+3=1\Rightarrow x=-2\)
\(x+3=-1\Rightarrow x=-4\)
\(x+3=2\Rightarrow x=-1\)
\(x+3=-2\Rightarrow x=-5\)
Vậy \(x\in\left\{-2;-4;-1;-5\right\}\)
Bài 2:
a)\(\left(2x-4\right)^2=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
b)\(\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\in Z\)
Suy ra \(2⋮x+3\Rightarrow x+3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{-2;-4;-1;-5\right\}\)