\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+...+16\right)\)
\(=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{3.2}+...+\dfrac{16.17}{16.2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)
\(=\dfrac{1}{2}\left(2+3+4+...+17\right)\)
\(=\dfrac{1}{2}.152\)
\(=76\)