Bài 1: Tìm x:
a) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
b) \(\left|\dfrac{5}{3}x\right|=\left|-\dfrac{1}{6}\right|\)
c) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|-\dfrac{3}{4}\right|\)
Bài 2: Tìm x,y:
a) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{1}{4}-\left|y\right|\)
b) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
Bài 3: Tìm giá trị nhỏ nhất:
a) A= \(\left|x+\dfrac{15}{19}\right|-1\)
b) B= \(\dfrac{1}{2}+\left|x-\dfrac{4}{7}\right|\)
Bài 4: Tìm giá trị lớn nhất:
a) A= 5- \(\left|\dfrac{5}{3}-x\right|\)
b) B= 9-\(\left|x-\dfrac{1}{10}\right|\)
Bài 1:
a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)
\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)
\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)
b )
\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)
\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)
c)
\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)
\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)
Bài 3:
a) Ta thấy:
\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)
Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)
b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)
Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)
Bài 4:
a)
\(|\frac{5}{3}-x|\geq 0, \forall x\)
\(\Rightarrow 5=A+|\frac{5}{3}-x|\geq A+0=A\)
Vậy GTLN của $A$ là $5$ khi \(\frac{5}{3}-x=0\Leftrightarrow x=\frac{5}{3}\)
b)
\(|x-\frac{1}{10}|\geq 0, \forall x\Rightarrow 9=B+|x-\frac{1}{10}|\geq B+0=B\)
Vậy GTLN của $B$ là $9$ khi \(x-\frac{1}{10}=0\Leftrightarrow x=\frac{1}{10}\)
Bài 2:
b)
Vì \(|x-y|\geq 0; |y+\frac{9}{25}|\geq 0\)
Do đó để \(|x-y|+|y+\frac{9}{25}|=0\) thì \(\left\{\begin{matrix} |x-y|=0\\ |y+\frac{9}{25}|=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=\frac{-9}{25}\)
a)
\(|\frac{1}{2}-\frac{1}{3}+x|=\frac{1}{4}-|y|\)
\(\Leftrightarrow |\frac{1}{6}+x|+|y|=\frac{1}{4}\)
PT này không tìm được $x,y$ cụ thể