Tìm m để hệ bpt \(\left\{{}\begin{matrix}\left(3-m\right)x+m>0\\\left(m-4\right)x+7-2m< 0\end{matrix}\right.\) có nghiệm x thuộc [0;1/2)
(key: m>7/2)
Tìm m để hệ bpt \(\left\{{}\begin{matrix}\left(x^4-x\right)\left(x^2-x+20\right)\le0\\mx-2\le3m\end{matrix}\right.\) có nghiệm duy nhất
tìm m để hệ bpt sau có nghiệm duy nhất :
\(\left\{\begin{matrix}x^2+mx+1\le0\\x^2+mx+5\ge0\end{matrix}\right.\)
Tìm m để BPT\(\left(m^2+1\right)x+m-2\ge0\) có nghiệm với mọi giá trị của x là
Xác định giá trị tham số m để bpt: mx-16\(\ge2\left(x-m^3\right)\) có tập nghiệm là [-56,\(\)\(+\infty\))
Tìm tất cả các giá trị của tham số m để bpt mx+4>0 nghiệm đúng với mọi \(\left|x\right|< 8\)
Gọi S là tập hợp các giá trị nguyên của tham số m để bất phương trình \(\dfrac{x^2-2x+4}{x^2-\left(3m+2\right)x+4}>0\) nghiệm đúng với mọi x. Tìm số phần tử của S.
A. 0 B. 5 C. 2 D. 3
( HEPL ME! )
Tập nghiệm của bpt \(\frac{2x-1}{\left|x-3\right|}< 0 \) là
A.\(\left(-3;\frac{1}{2}\right) \)
B.(-∞;-3)
C.\(\:\left(\frac{1}{2};+\infty\right)\)
D.\(\:\left(-\infty;\frac{1}{2}\right)\backslash\left\{3\right\}\)
Bài 1. Tìm điều kiện các BPT sau
a, \(\sqrt{20-x}>\sqrt{3x-6}+1\)
b, \(\frac{\sqrt{9-x^2}}{x-1}>\frac{1}{\sqrt{x}}+1\)
c, \(x+\frac{x+1}{\sqrt{x-4}}>2-\frac{2}{x^2-25}\)
d, \(\sqrt{x}>\sqrt{-x}\)
e, \(3x+\frac{4}{\sqrt{x-5}}\le9+\frac{x}{x-6}\)
f, \(\frac{x+2}{10+3x^2}\ge7+\frac{4}{\left(3x+9\right)^2}\)
g, \(\frac{\sqrt{x+2}}{\sqrt{x-2}}+\frac{1}{\left(x-4\right)\left(x+6\right)}\le\frac{3}{\sqrt{8-x}}\)
h, \(\frac{\sqrt{x+6}}{\left|x\right|-\sqrt{x+6}}\ge\sqrt{16-2x}\)