bài 1 : Tìm GTNN(min) : A = \(\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}x\)
bài 2 : Cho P(x) = ax3 + bx2 + cx + d với a,b,c,d \(\in\) Z
Biết P(0) và P(1) là số lẻ
Chứng minh rằng : P(x) không thể có nghiệm là số nguyên
Chứng minh:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{5.7.9}+\dfrac{36}{9.11.13}+...+\dfrac{36}{25.27.29}< 3\)
\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\in< 1\left(n\in N,n\ge2\right)\)
\(D=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< 4\left(n\in N,n\ge2\right)\)
\(E=\dfrac{2!}{3!}+\dfrac{2!}{4!}+\dfrac{2!}{5!}+...+\dfrac{2!}{n!}< 1\left(n\in N,n\ge3\right)\)
Cho hàm số \(y=f\left(x\right)=ax^2+bx+1\)
a) Biết f(1) = 1 ; f(-1) = 3 . Tìm a,b
b) với a,b tìm được ở câu a . Chứng minh rằng với mọi số tự nhiên n,n >1 thì phân số \(\dfrac{n}{f\left(n\right)}\) tối giản
Tính tổng
S = \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+....+\dfrac{2n+1}{[n\left(n+1\right)]^2}\)
1) Tính
\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)
\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)
2) Tìm x biết:
a) \(x^2-2x-15=0\)
b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)
3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)
4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)
\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)
Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1
5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)
Chứng minh: BC > MN
6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C
1 (5 điểm)
a) Tính giá trị biểu thức: \(L=\left(-\dfrac{3}{4}+\dfrac{4}{11}\right):\dfrac{7}{11}+\left(-\dfrac{4}{7}+\dfrac{7}{11}\right):\dfrac{7}{11}\)
b) Tính giá trị nhỏ nhất của biểu thức: \(L=\left[\left(x+1\right)^2+3\right]^2+\left|y-5\right|+2008\)
2(4 điểm)
a) Tìm 3 số x;y;z thỏa mãn \(20x=15y=12z\) và \(2x^2+2y^2-3z^2=-100\)
b) Cho đa thức \(L_1\left(x\right)=x^2+2xm+m^2\) và \(L_2\left(x\right)=x^2+\left(2x+1\right)x+m^2\)
Tìm m biết \(L_1\left(1\right)=L_2\left(-1\right)\)
3(4 điểm)
a) Chứng minh \(5^{n+3}-3^{n+3}+5^{n+2}-3^{n+1}⋮60\) với mọi n thuộc N
b) Chứng minh \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2017}{4^{2017}}< \dfrac{1}{2}\)
6 điểm được free ạ =)))))
Câu 1: tìm x biết \(\left[\dfrac{1}{\left(2.5\right)}+\dfrac{1}{\left(5.8\right)}+\dfrac{1}{\left(8.11\right)}+.....+\dfrac{1}{\left(65.68\right)}\right].x-\dfrac{7}{34}=\dfrac{19}{68}\)
Câu 2: tìm số tự nhiên n biết 2n +2n-2 = 5/2
Câu 3: nếu\(0< a< b< c< d< e< f\)
và \(\left(a-b\right)\left(c-d\right)\left(e-f\right)x=\left(b-a\right)\left(d-c\right)\left(f-e\right)\)thì x=..........
Câu 4: cho 3 số x;y;z khác 0 thỏa mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
khi đó \(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)có giá trị bằng ...............
Câu 5: số giá trị của x thỏa mãn \(|x+1|+|x-1012|+|x+3|+|x+1013|=2013\)
Câu 6: biết tổng các chữ số của 1 số k đổi khi chia số đó cho 5. số dư của số đó khi chia cho 9 là...........
Câu 7: độ dài cạnh góc vuông của 1 tam giác vuông can ABC tại A có đường phân giác kẻ từ đỉnh A bằng \(\dfrac{3\sqrt{2}}{2}cm\)là .........cm
Câu 8: rút gọn \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2013}}{2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}}\)ta đc A=............
Câu 9: cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a};a+b+c\ne0\)và \(a=2014\) khi đó \(a-\dfrac{2}{19}b+\dfrac{5}{53}c=.......\)
Câu 10: tìm x;y;z biết\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\) trả lời x=....; y=....; z=....
Cho 2 đa thức : \(P_{\left(x\right)}=1+x+x^2+x^3+x^4+...+x^{2009}+x^{2010}\\ vàQ_{\left(x\right)}=1-x+x^2-x^3+x^4-...-x^{2009}+x^{2010}.\)
Giá trị của biểu thức \(P_{\left(\dfrac{1}{2}\right)}+Q_{\left(\dfrac{1}{2}\right)}\) có dạng biểu diễn hữu tỉ là \(\dfrac{a}{b}\); a, b ∈ N; a,b là 2 số nguyên tố cùng nhau. Chứng minh a ⋮ 5.
Ai giỏi Toán giải hộ mình nha ! Thanks nhìu !!!♥♥
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)