a)
A=(x^3+3x^2+3x+1)+4(x^2+2x+1)+7(x+1)
A=(x+1)^3+4(x+1)^2+7(x+1)
A=(x+1)[(x+1)^2+4(x+1)+7)]
b)
B=x^3-3x^2+4
=(x^3+x^2)-4(x^2-1)
B=(x+1)[x^2-4(x-1)]
=(x+1)[x^2-4x+4)
=(x+1)(x-2)^2
c)
c=(x^3+3x^2+3x+1)-(x^2-1)
=(x+1)^3-(x-1)(x+1)[
=(x+1)[(x+1)^2-(x-1)]
C=(x+1)[(x^2+x+2)
d)
D=(x^3+x^2)+(5x^2+5x)+(6x+6)
D=(x+1)[x^2+5x+6]
D=(x+1)(x+2)(x+3)