Bài 1:
a) \(25-x^2+2xy-y^2=25-\left(x^2-2xy+y^2\right)\)
\(=5^2-\left(x-y\right)^2=\left(5-x+y\right)\left(5+x-y\right)\)
b) \(18-x^2+12xz-9z^2\): không thể phân tích thành nhân tử
c) Không thể phân tích thành nhân tử.
d) \(16-x^2-2xy-y^2=4^2-\left(x^2+2xy+y^2\right)\)
\(=4^2-\left(x+y\right)^2=\left(4-x-y\right)\left(4+x+y\right)\)
e) Sử đề \(x^2+2xy+y^2-z^2-4zt-4t^2\)
\(=\left(x+y\right)^2-\left(z^2+2.z.2t+\left(2t\right)^2\right)\)
\(=\left(x+y\right)^2-\left(z+2t\right)^2=\left(x+y-z-2t\right)\left(x+y+z+2t\right)\)
f) \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
g) \(x^4+64=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
h) \(x^4+36x^2+324-36x^2\)
\(=\left(x^2+18\right)^2-\left(6x\right)^2=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)