x + y + z = 0 \(\Rightarrow\) x = - ( y + z )
\(\Rightarrow\) \(x^2\) = \((y+z)^2\) = \(y^2\) + \(z^2 \) + 2yz
\(\Rightarrow\) \(x^2\) - \(y^2\) - \(z^2 \) = 2xy
\(\Rightarrow\) (\(x^2-y^2-z^2\) )\(^2 \) = \((2xy)^2\)= \(4x^2y^2\)
\(\Rightarrow\) \(x^4 + y^4 + z^4\) - \(2x^2y^2\) - \(2x^2z^2\) = \(4x^2y^2\)
\(\Rightarrow\) \(x^4+y^4+z^4\) = \(4y^2z^2\) - \(2y^2z^2\) + \(2x^2y^2\) = \(2x^2y^2 + 2y^2z^2+ 2x^2z^2\)
\(\Rightarrow\) 2 (\(x^4+y^4+z^4\) ) = \((x^2+y^2+z^2)^2\) (đpcm)
\(x+y+z=0\Rightarrow x=-\left(y+z\right)\)
\(\Rightarrow x^2=\left(y+z\right)^2=y^2+z^2+2yz\)
\(\Rightarrow x^2-y^2-z^2=2xy\)
\(\Rightarrow\left(x^2-y^2-z^2\right)^2=\left(2xy\right)^2=4x^2y^2\)
\(\Rightarrow x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4x^2y^2\)
\(\Rightarrow x^4+y^4+x^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)