Cho tam giác Abc vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn BH=9cm HC=16cm a. Tính độ dài đoạn AH AB AC b. Gọi M là trung điểm của Ai tính số đo góc AMB (làm tròn đến độ)
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Cho tam giác ABC vuông tại A. Đường cao AH ứng với cạnh huyền BC. Giả sử AH=12, HC=16. Tính độ dài các đoạn thẳng BH, AB.
Cho tam giác ABC vuông tại A , biết AC = 15cm ; BC = 18cm.
a) Giải tam giác vuông ABC. ( Số đo của góc làm tròn đến độ )
b) Kẻ đường cao AH của ΔABC . Tính AH ; CH.
Đề bài: Cho tam giác ABC vuông tại A, đường cao AH. Tính độ dài các cạnh còn lại của tam giác ABC trong mỗi trường hợp sau:
a. AB = a, AH = \(\dfrac{a\sqrt{3}}{2}\)
b. BC = 2a, HB = \(\dfrac{1}{4}BC\)
c. AB = a, CH = \(\dfrac{3}{2}a\)
d. CA = \(a\sqrt{3}\), AH = \(\dfrac{a\sqrt{3}}{2}\)
Giúp mình với ạ, mình cảm ơn trước.
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
(2,5 điểm) Cho triangle ABC vuông tại A, đường cao AH, đường trung tuyến. AM 1 ) Biết BC = 10 cm, BH = 3.6cm Tỉnh độ dài đoạn thẳng AB, AH và số đo góc HAM ( làm ròn số đo góc đến phút) b) từ B kẻ BE vuông góc AM (E thuộc AM ) BE cắt cắt AH tại D. Chứng minh rằng DM II AC HD = DM * sin C Lấy điểm K trên cạnh BE sao cho hat AKM = 90 deg Chứng minh AE. ME = BE .DE VÀ S² AMK =S² AMB. S AMD
Bài 8. Cho AABC vuông tại A có AB = 5cm; BC = 13cm; AH là đường cao. a) Tính AC, AH và B ( Số đo góc làm tròn đến độ, độ dài cạnh làm tròn đến chữ số thì phân thứ hai ). b) Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh AE.EB+AF.FC- HB.HC=0 c) Chứng minh AH=EF. Từ đó suy ra BC =3AH + BE +CF.
Bài 2: Cho tam giác ABC nhọn có đường cao AH. Gọi E là hình chiếu của H trên AB.
a, Biết AE = 3,6 cm ; BE = 6,4 cm. Tính AH, EH và góc B ( Số đo góc làm tròn đến độ)
b, Kẻ HF vuông góc với AC tại F. Chứng minh AB . AE = AC . AF
c , Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O.
C1, Chứng minh tam giác AEF đồng dạng với tam giác ACB
C2, Chứng minh: