Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thanh Lương

bài 1:

B= \(\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)

a. Rút gọn B

b. tìm a sao cho B>1

c. tìm B khi a= 2007-\(2\sqrt{2006}\)

Nhã Doanh
5 tháng 7 2018 lúc 8:15

\(ĐKXĐ:a\ne1;a\ge0;\)

\(B=\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)

\(B=\dfrac{a+1+\sqrt{a}}{a+1}:\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)-\left(a+1\right)}\right]\)

\(B=\dfrac{a+1+\sqrt{a}}{a+1}:\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]\)

\(B=\dfrac{a+1+\sqrt{a}}{a+1}:\left[\dfrac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]\)

\(B=\dfrac{a+1+\sqrt{a}}{a+1}:\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)

\(B=\dfrac{a+1+\sqrt{a}}{a+1}:\dfrac{\sqrt{a}-1}{a+1}\)

\(B=\dfrac{a+1+\sqrt{a}}{a+1}.\dfrac{a+1}{\sqrt{a}-1}\)

\(B=\dfrac{a+1+\sqrt{a}}{\sqrt{a}-1}\)

b.

\(B=\dfrac{a+1+\sqrt{a}}{\sqrt{a}-1}>1\)

\(\Rightarrow B=\dfrac{a+1+\sqrt{a}}{\sqrt{a}-1}-1>0\)

\(\Rightarrow B=\dfrac{a+1+\sqrt{a}-\sqrt{a}+1}{\sqrt{a}-1}>0\)

\(\Rightarrow B=\dfrac{a+2}{\sqrt{a}-1}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+2>0\\\sqrt{a}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}a+2< 0\\\sqrt{a}-1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a>1\\a< -2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow a>1\)

c.

\(a=2007-2\sqrt{2006}=2006-2\sqrt{2006}+1=\left(\sqrt{2006}-1\right)^2\)Thay \(a\) vào ta được:

\(B=\dfrac{2007-2\sqrt{2006}+1+\sqrt{\left(\sqrt{2006}-1\right)^2}}{\sqrt{\left(\sqrt{2006}-1\right)^2}-1}\)

\(B=\dfrac{2007-2\sqrt{2006}+1+\sqrt{2006}-1}{\sqrt{2006}-1-1}\)

\(B=\dfrac{2007-\sqrt{2006}}{\sqrt{2006}-2}\)

\(B=\dfrac{\left(2007-\sqrt{2006}\right)\left(\sqrt{2006}+2\right)}{\left(\sqrt{2006}-2\right)\left(\sqrt{2006}+2\right)}\)

\(B=\dfrac{2007\sqrt{2006}+4014-2006-2\sqrt{2006}}{2006-4}\)

\(B=\dfrac{2005\sqrt{2006}+2008}{2002}\)


Các câu hỏi tương tự
Nguyễn Khánh Phương
Xem chi tiết
Chóii Changg
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Anh Quynh
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Herimone
Xem chi tiết
đặng quốc khánh
Xem chi tiết
Ngưu Kim
Xem chi tiết