a,A=\(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
b,B=\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{998\times999\times100}\)
c,C=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1\times98+2\times97+3\times96+...+98\times1}\)
Tìm x biết:
a) \(^{2^x+2^{x+1}+2^{x+2}+2^{x+3}=480}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
a,Cho A=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\cdot2\cdot3\cdot4\cdot...\cdot98\)
CMR:A chia hết cho 99
b,Cho B=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\) và B bằng phân số \(\frac{a}{b}\) .CMR A chia hết cho 97
Cho A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}\)
CMR:0,2<A<0,4
Tính nhanh giá trị biểu thức sau:
a) \(-\frac{9}{10}\cdot\frac{5}{14}+\frac{1}{10}\cdot\left(-\frac{9}{2}\right)+\frac{1}{7}\cdot\left(-\frac{9}{10}\right)\)
b)\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right)\cdot132\)
c)\(-\frac{2}{3}\cdot\left(\frac{8}{9}\cdot\frac{8}{13}-\frac{8}{27}\cdot\frac{3}{13}+\frac{4}{3}\cdot\frac{22}{39}\right)\)
Bài 1. Chứng minh:
A= \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
A = \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\) + \(\frac{1}{4^2}\) + ....+ \(\frac{1}{100^2}\) < 1
Chứng minh :
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2008^2}< 1\)
\(\frac{2+\frac{2}{1}}{1+\frac{1}{1+\frac{1}{3}}}\)