Rút gọn biểu thức
a) A= \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b) B= \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}\)
c) C= \(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\)
Bài 1. Cho A=\(\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
a, Rút gọn biểu thức A
b,Xác định a để biểu thức A >\(\frac{1}{2}\)
Bài 2.Cho B=\(\left(\frac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x \(\ne\)4
a,Rút gọn A
b,Tính A với x=6-\(2\sqrt{5}\)
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
Cho biểu thức E=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a/Rút gọn biểu thức E
b/ Tìm x để E = 2.
c/Tính giá trị của E khi x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Bài 1 :
a, \(\sqrt{45}-2\sqrt{\frac{4}{3}}+\frac{\sqrt{18}}{\sqrt{6}}-\sqrt{5\frac{1}{3}}\)
b, (\(\sqrt{7}-\sqrt{3}\) )2 +\(\sqrt{84}\)
Bài 2 : Chứng minh đẳng thức
\(\left(\frac{\sqrt{21}-\sqrt{7}}{\sqrt{3}-1}\frac{\sqrt{15}+\sqrt{3}}{\sqrt{5}+1}\right):\frac{1}{\sqrt{7}+\sqrt{3}}=4\)
Bài 3: Cho biểu thức : A=\(\left(1-\frac{2\sqrt{2a}}{a+2}\right):\left(\frac{1}{\left(\sqrt{a}+2\right)}-\frac{2\sqrt{2a}}{\left(a+2\right)\left(\sqrt{a}+2\right)}\right)\)
a. Rút gọn A
b. Tính A khi a =2009-2\(\sqrt{2008}\)
Bài 4 : Cho A =\(\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\) điều kiện x>0 , x≠1,x≠4
a.Rút gọn
b. Tìm x để A =\(\frac{1}{2}\)
Rút gọn biểu thức:
1) \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
2) \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
3) \(B=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
4) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right)\div\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
a/\(2\sqrt{60}-15\sqrt{\frac{3}{5}}+\left(\sqrt{3}-\sqrt{5}\right)\sqrt{3}-\frac{4\sqrt{5}}{\sqrt{3}-\sqrt{7}}\)
cho biểu thức
P=
\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\left(x\ge0;x\ne9\right)\)
a/ rút gọn P
b/ Tìm tất cả các giá trị của x để P<\(-\frac{1}{3}\)
Giải hộ mình với
1 chứng minh đẳng thức:
a) \(\frac{\sqrt{a^2+x^2}+\sqrt{a^2+x^2}}{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}}=\frac{a^2}{x^2}\)với \(\left|a\right|\)>\(\left|x\right|\)
b) \(\left(\frac{5+2\sqrt{6}}{\sqrt{x}+\sqrt{2}}\right)^2-\left(\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{6}}\right)^2=4\sqrt{6}\)
2.
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
a) Rút gọn A nếu \(x\ge0\)và \(x\ne4\)
b) Tìm x để A-2