R1 nt R2 nt R3 = > I1 = I2 = I3 = I.
Ta có: \(P_1=I_1^2R_1\Leftrightarrow1,08=I_1^2.R_1\)(1)
\(P_2=I_2^2R_2\Leftrightarrow0,36=I_2^2R_2\)(2)=> \(I_2=\sqrt{\dfrac{0,36}{R_2}}=\dfrac{0,6}{\sqrt{R_2}}\)(*)
\(P_3=I_3^2R_3\Leftrightarrow2,16=I_3^2R_3\)(3)
(1)(2) => \(3R_2=R_1\)
(2)(3)\(\Rightarrow6R_2=R_3\)
\(\Rightarrow2R_1=6R_2=R_3\)(**)
(*)(**)=> \(U=I\left(R_1+R_2+R_3\right)=\dfrac{0,6}{\sqrt{R_2}}\left(6R_2+3R_2+R\right)=6\sqrt{R_2}\)
TH2: Mắc song song.
U1 = U2 = U3 = U
\(\Rightarrow P_1'=\dfrac{U_1^2}{R_1}=\dfrac{36R_2}{3R_2}=12\left(W\right)\)
\(\Rightarrow P_2'=\dfrac{U_2^2}{R_2}=\dfrac{36R_2}{R_2}=36\left(W\right)\)
\(\Rightarrow P_3'=\dfrac{U_3^2}{R_3}=\dfrac{36R_2}{6R_2}=6\left(W\right)\)