Bài 1:
Có: n2 + n = n(n+1)
Xét: Nếu n lẻ thì n+1 chẵn => n(n+1) chia hết cho 2 (1)
Nếu n chẵn thì n chẵn => n(n+1) chia hết cho 2 (2)
Từ (1) và (2) => n2 + n là hợp số
Bài 2:
a) M = 1 + 32 + 34 + ... + 398
=> 9M = 32 + 34 + ... + 3100
=> 9M - M = 3100 - 1
=> M = \(\frac{3^{100}-1}{8}\)
b) M = 1 + 32 + 34 + ... + 398
= (1+32) + (34+36) + ... + (396+398)
= 10 + 34(1+32) + ... + 396(1+32)
= 10(34+...+396) \(⋮\) 10
Bài 2:
a) \(M=1+3^2+3^4+3^6+3^8+...+3^{98}\)
\(\Rightarrow9M=3^2+3^4+3^6+...+3^{100}\)
\(\Rightarrow9M-M=\left(3^2+3^4+3^6+...+3^{100}\right)-\left(1+3^2+3^4+...+3^{98}\right)\)
\(\Rightarrow8M=3^{100}-1\)
\(\Rightarrow M=\frac{3^{100}-1}{8}\)
b) \(M=1+3^2+3^4+...+3^{98}\)
\(\Rightarrow M=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(\Rightarrow M=\left(1+9\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)
\(\Rightarrow M=10+3^4.10+3^{96}.10\)
\(\Rightarrow M=\left(1+3^4+3^{96}\right).10⋮10\)
\(\Rightarrow M⋮10\)
soyeon_Tiểubàng giải
Nguyễn Huy Tú
Trần Việt Linh
Nguyễn Huy Thắng
Nguyễn Đình Dũng
Võ Đông Anh Tuấn
và tất cả mn nhé