Giải:
Đặt: \(A=1+2+2^2+2^3+...+2^{2018}\)
\(\Leftrightarrow A=2+2^2+2^3+2^4...+2^{2019}\)
\(\Leftrightarrow2A-A=2^{2019}-1\)
Đặt A và tử của B, ta được:
\(B=\dfrac{2^{2019}-1}{1-2^{2019}}\)
\(\Leftrightarrow B=-1\)
Vậy ...
Giải:
Đặt: \(A=1+2+2^2+2^3+...+2^{2018}\)
\(\Leftrightarrow A=2+2^2+2^3+2^4...+2^{2019}\)
\(\Leftrightarrow2A-A=2^{2019}-1\)
Đặt A và tử của B, ta được:
\(B=\dfrac{2^{2019}-1}{1-2^{2019}}\)
\(\Leftrightarrow B=-1\)
Vậy ...
So sánh \(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\) và \(B=2018\)
Cho: S=\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2018^2}\)chứng tỏ S< \(\dfrac{1}{4}\)
Bài 1: Tìm x, biết
a)\(\dfrac{-2}{3}\)- \(\dfrac{1}{3}\) (2x-5) = \(\dfrac{3}{2}\)
b)\(\dfrac{2}{5}\) .x +\(\dfrac{1}{2}\) = \(\dfrac{-3}{4}\)
giúp em
A=\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
B=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
Bài 1 : Tính nhanh
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
Bài 2:Tìm x biết
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)
Cho A= 1/2^2 + 1/3^2 + 1/4^2+......+ 1/2019^2 + 1/2020^2
Thực hiện phép tính
a) A= \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)\)\(+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)
b) B=\(\dfrac{1-3}{1.3}+\dfrac{2-4}{2.4}+\dfrac{3-5}{3.5}+\dfrac{4-6}{4.6}+...+\dfrac{2011-2013}{2011.2013}+\dfrac{2012-2014}{2012.2014}-\dfrac{2013+2014}{2013.2014}\)
a) \(\dfrac{2}{1^2}.\dfrac{6}{2^2}.\dfrac{12}{3^2}.\dfrac{20}{4^2}.\dfrac{30}{5^2}.....\dfrac{110}{10^2}.x=-20\)
b) \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right).x+2013=\dfrac{2014}{1}+\dfrac{2015}{2}+...+\dfrac{4025}{2012}+\dfrac{4026}{2013}\)
c) \(\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right).x=\dfrac{2012}{51}+\dfrac{2012}{52}+...+\dfrac{2012}{99}+\dfrac{2012}{100}\)
tìm x biết :
a) \(\left|x+\dfrac{1}{2}\right|\)=\(\dfrac{5}{2}\) b) \(\left|2x-\dfrac{2}{3}\right|\)+\(\dfrac{1}{3}\)=0 c) |x-2| = 2x + 1