\(B=7+7^3+7^5+...+7^{99}\\ 49B=7^3+7^5+7^7+...+7^{101}\\ 49B-B=\left(7^3+7^5+7^7+...+7^{101}\right)-\left(7+7^3+7^5+...+7^{99}\right)\\ 48B=7^{101}-7\\ B=\dfrac{7^{101}-7}{48}\)
Vậy \(B=\dfrac{7^{101}-7}{48}\)
\(B=7+7^3+7^5+...+7^{99}\)
\(\Rightarrow7^2.B=7^3+7^5+7^7+...+7^{99}+7^{101}\)
Hay \(49B=7^3+7^5+7^7+...+7^{99}+7^{101}\)
\(\Rightarrow48B=49B-B=7^{101}-7\)
\(\Rightarrow B=\dfrac{7^{101}-7}{48}\)
Vậy \(B=\dfrac{7^{101}-7}{48}\)
tik mik nha !!!