Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Despacito

\(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\dfrac{1}{\sqrt{a}}\right)\)

a) rút gọn A

b) tính A với \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

Akai Haruma
26 tháng 4 2018 lúc 18:18

Lời giải:

a) ĐKXĐ: \(a>0; a\neq 1\)

\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)

\(A=\frac{(\sqrt{a}+1)^2-(\sqrt{a}-1)^2+4\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}{(\sqrt{a}-1)(\sqrt{a}+1)}.\frac{a+1}{\sqrt{a}}\)

\(A=\frac{a+1+2\sqrt{a}-(a+1-2\sqrt{a})+4\sqrt{a}(a-1)}{a-1}.\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4\sqrt{a}+4\sqrt{a}(a-1)}{a-1}.\frac{a+1}{\sqrt{a}}=\frac{4\sqrt{a}.a}{a-1}.\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4a(a+1)}{a-1}\)

b)

Ta có:

\(a=(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})^2\)

\(=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})\)

\(=2(16-15)=2\)

Thay $a=2$ vào biểu thức đã thu gọn:

\(A=24\)


Các câu hỏi tương tự
Trần Phương Thảo
Xem chi tiết
long bi
Xem chi tiết
nguyễn thị hiền nga
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Ngân Trần
Xem chi tiết
Ngân Trần
Xem chi tiết
vi thanh tùng
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Ngọc Anh
Xem chi tiết