a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)
=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)
=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)
=(5x)\(^3\)
=5\(^3\).x\(^3\)
=125.x\(^3\)
a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)
=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)
=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)
=(5x)\(^3\)
=5\(^3\).x\(^3\)
=125.x\(^3\)
Làm tính chia :
a) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
b) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
c) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
Làm tính chia:
a) \(5x^2y^4:10x^2y\)
b)\(\dfrac{3}{4}x^3y^3:\left(-\dfrac{1}{2}x^2y^2\right)\)
c)\(\left(-xy\right)^{10}:\left(-xy\right)^5\)
Làm tính chia :
a) \(\left(5x^4-3x^3+x^2\right):3x^2\)
b) \(\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)\)
c) \(\left(x^3y^3-\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
Làm phép chia
a. \(\left(20x^4y-25x^2y^2-3x^2y\right):5x^2y\)
b. \(\left(15xy^2+17xy^3+18y^2\right):6y^2\)
c. \(\left[3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2\right]:\left(y-x\right)^2\)
d. \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
Tính:
1). \(0,5a^mb^nc^2:\left(\dfrac{-2}{3}a^2bc\right)\)
2). \(\dfrac{2}{7}\left(x-2y\right)^{2m+1}:\left[\dfrac{-5}{14}\left(2y-x\right)^{2m-1}\right]\)
Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên) :
a) \(\left(5x^3-7x^2+x\right):3x^n\)
b) \(\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)\)
c) \(\left(x^3y^3-\dfrac{1}{2}x^2y-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
Làm tính chia :
a) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)
b) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
c) \(\left(3x^2y^2+6x^2y^3-12xy\right):3xy\)
Làm tính chia:
a) \(5^3:\left(-5\right)^2\)
b) \(\left(\dfrac{3}{4}\right)^5:\left(\dfrac{3}{4}\right)^3\)
c) \(\left(-12\right)^3-8^3\)
d) \(x^{10}:\left(-x\right)^8\)
e) \(\left(-x\right)^5:\left(-x\right)^3\)
f) \(\left(-y\right)^5:\left(-y\right)^4.\)
Bài 1: Thực hiện phép tính:
a) \(32x^5\left(3y-7\right)^5:[-4x\left(7-3y\right)^4]\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)^4}{\left(x+7\right)^3}\)