\(a,\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2=2ab-b^2\)
\(=4ab\)
\(b\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
\(=\left(a^3+3a^2b+3ab^2+b_{ }^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)-2b^3\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3\)
\(=6a^2b\)
a.\(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=4ab\)
b.\(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)-2b^3\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3\)
\(=6a^2b+2b^3-2b^3\)
\(=6a^2b\)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a.2b\)
a, (a + b)^2 - (a - b)^2
=a^2 + 2ab + b^2 - a^2 + 2ab - b^2
=4ab
b, (a + b)^3 - (a - b)^3 - 2b^3
=a^3 + 3a^2b + 3ab^2 + b^3 - a^2 + 3a^2b - 3ab^2 + b^3 - 2b^3
=6a^2b