Đề bài: Vẽ tam giác ABC biết ∠A = 900; AB = AC = 3cm. Sau đó đo các góc ∠B và ∠C.
Bài giải: Cách vẽ:
– Vẽ góc ∠xAy = 900
– Trên tia Ax vẽ đoạn thẳng AB = 3cm,
– Trên tia Ay vẽ đoạn thẳng AC = 3cm,
– Vẽ đoạn BC.
Ta vẽ được đoạn thẳng BC.
Ta đo các góc B và C ta được ∠B = ∠C = 450
Đề bài: Trên mỗi hình 82,83,84 sau có các tam giác nào bằng nhau? Vì sao?
Bài giải:
Hình 82:
∆ADB và ∆ADE có: AB = AE (gt)
∠A1b= ∠A2 , AD chung.
Nên ∆ADB = ∆ADE(c.g.c)
Hình 83:
∆HGK và ∆IKG có:
HG = IK (gt)
∠G = ∠K (gt)
GK là cạnh chung (gt)
nên ∆HGK = ∆IKG( c.g.c)
Hình 84:
∆PMQ và ∆PMN có: MP cạnh chung
∠M1 = ∠M2
Nhưng MN không bằng MQ. Nên PMQ không bằng PMN.
Đề bài: Xét bài toán:
” Cho tam giác ABC, M là trung điểm của BC, Trên tia đối của MA lấy điểm E sao cho ME=MA. Chứng minh rẳng AB//CE”.
Hãy sắp xếp lại năm câu sau đây một cách hợp lí để giải bài toán trên:
1) MB = MC(gt)
∠AMB = ∠EMC (Hai góc đối đỉnh)
MA = ME(Giả thiết)
2) Do đó ∆AMB=∆EMC(c.g.c)
3) ∠MAB = ∠MEC
⇒ AB//CE (hai góc bằng nhau ở vị trí sole trong)
4) ∆AMB= ∆EMC⇒ ∠MAB = ∠MEC (Hai góc tương ứng)
5) ∆AMB và ∆EMC có:
Bài giải:
Thứ tự sắp xếp hợp lý nhất là: 5,1,2,4,3.
Đề bài: Nêu thêm một điều kiện để hai tam giác trong mỗi hình vẽ dưới đây là hai tam giác bằng nhau theo trường hợp cạnh-góc- cạnh.
a) ∆ABC= ∆ADC (h.86);
b) ∆AMB= ∆EMC (h.87)
c) ∆CAB= ∆DBA.(h.88)
Bài giải:
a) Bổ sung thêm ∠BAC = ∠DAC để ∆ABC = ∆ADC
Vì ta có AB = AD (gt) ; và AC cạnh chung.
b) Bổ sung thêm MA = ME để ∆AMB= ∆EMC
Vì ta có ∠AMB = ∠EMC (gt); MN = MC (gt)
c) Bổ sung thêm AC = BD để ∆CAB= ∆DBA
Vì ta có 2 tam giác CAB và DBA là 2 tam giác vuông, Cạnh AB chung.
Đề bài: Trên hình 89 có bao nhiêu tam giác bằng nhau.
Bài giải:
Tam giác DKE có: ∠D + ∠K + ∠E = 1800 (tổng ba góc trong của tam giác).hay ∠D + +800 +400 = 1800
⇒∠D = 1800 -1200 = 600
Xét ∆ ABC và ∆KDE có:
AB = KD(gt)
∠B = ∠D ( cùng = 600 )
và BE = ED (gt)
Do đó ∆ABC= ∆KDE (c.g.c)
Tam giác MNP không có góc xem giữa hai cạnh tam giác KDE ha ABC nên không bằng hai tam giác còn lại