Theo đề ra, ta có:
\(OB-OA=8\) ⇒ \(\left\{{}\begin{matrix}OB=OA+8\\AB=8\end{matrix}\right.\)
Δ\(OBD\) có CA // DB \(\left(gt\right)\), theo định lí Ta-lét, ta có:
\(\dfrac{OC}{OD}=\dfrac{OA}{OB}\)
⇔ \(\dfrac{3}{4}=\dfrac{OA}{OA+8}\)
⇒ \(4OA=3OA+24\)
⇔ \(4OA-3OA=24\)
⇔ \(OA=24\)
Khi \(OA=24\) ⇒ \(OB=24+8=32\)
\(Vậy\) \(\left\{{}\begin{matrix}AB=8\\OA=24\\OB=32\end{matrix}\right.\)