a)\(A=\frac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\frac{x+\sqrt{x}}{\sqrt{x}+1}\\ A=\sqrt{x}-1+\sqrt{x}\\ A=2\sqrt{x}-1\)
a)\(A=\frac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\frac{x+\sqrt{x}}{\sqrt{x}+1}\\ A=\sqrt{x}-1+\sqrt{x}\\ A=2\sqrt{x}-1\)
1. Cho biểu thức: A= \(\left(\frac{4\sqrt{y}}{2+\sqrt{y}}+\frac{8y}{4-y}\right):\left(\frac{\sqrt{y}-1}{y-2\sqrt{y}}+\frac{2}{\sqrt{y}}\right)\)
a) rút gọn A
b) tìm y để A =-2
2. cho biểu thức P=\(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)
a) rút gọn P
b) tìm x ∈ Z để P nhận nguyên
3. cho biểu thức B=\(\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)
a) rút gọn B
b) tìm x để B<0
Giúp mình làm nhanh với ạk . cần gấp !!!!!
\(A=\frac{x-2\sqrt{x}}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\frac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)
a)Rút gọn A
b)Tìm x để A nguyên
Bài 1 1) Tính a)\(\frac{\sqrt{5}}{4}-\frac{1}{\sqrt{5}-1}\) b)\(\left(8\sqrt{27}-6\sqrt{48}\right):\sqrt{3}\) 2) Cho\(A=\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\left(x>0,x\ne1,x\ne4\right)\)Rút gọn b)Tìm x để A =\(\frac{1}{2}\) Bài 2 Cho biểu thức \(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\) a) Tìm điều kiện xác định ,Rút gọn A b) tình giá trị của A khi \(x=3-2\sqrt{2}\) (Mình xin cảm ơn)
A=\(\frac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\frac{x+\sqrt{x}}{\sqrt{x}+1}\)
a,Rút gọn A
b,Tìm x để A< -1
A=\(\frac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\frac{x+\sqrt{x}}{\sqrt{x}+1}\)
a,Rút gọn A
b,Tìm x để A< -1
A=(\(\frac{\sqrt{x}}{x\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}):\frac{\sqrt{x}+1}{x\sqrt[]{x}+1}\)
a.Rút gọn A
b,Tìm gt biểu thức A khi x=\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c,Tìm x để A=\(\sqrt{x}\)
Cho biểu thức: A = \(\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\); \(x>0.x\ne1,x\ne4\)
a, Rút gọn A
b, Tìm x để A = 0
rút gọn
\(A=\frac{1}{\sqrt{x}+\sqrt{x-1}}-\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x\sqrt{x-x}}{1-\sqrt{x}}\)
b, tính x để A>0
Rút gọn:
a) \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\left(x\ge0,x\ne1\right)\)
b) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
c) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)