Cho A=\(\dfrac{\sqrt{1-\sqrt{1-x^2}}.\left[\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right]}{2-\sqrt{1-x^2}}\)
a) Rút gọn A
b) Tìm x biết A\(\ge\) \(\dfrac{1}{2}\)
cho biểu thức P=\(\left[\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right]:\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)\)
a/ Rút gọn P
b/ Tìm a để \(\frac{1}{P}-\frac{\sqrt{a}+1}{8}\ge1\)
Cho biểu thức P=\(\left[\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right]:\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)\)
a/ Rút gọn P
b/ Tìm a để \(\frac{1}{P}-\frac{\sqrt{a}+1}{8}\ge1\)
Rút gọn biểu thức:
\(\dfrac{\sqrt{a-2}+2}{3}\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)
Rút gọn biểu thức:
\(a,\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(b,\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
rút gọn biểu thức A=\(\dfrac{\left(2-\sqrt{a}\right)-\left(\sqrt{a+3}\right)}{1+2\sqrt{a}}\) (với a>0) ; B=\(\dfrac{1}{1-\sqrt{2}+\sqrt{3}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\); C=\(\dfrac{1}{\sqrt{5-2}}+\dfrac{1}{\sqrt{5+\sqrt{2}}}\)
Cho biểu thức: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-4}{\sqrt{x}-3}-1\right)\)
a/ Tìm điều kiện xác định của biểu thức A
b/ Rút gọn A
c/ Tìm các giá trị nguyên của x để giá trị A là một số nguyên.
P=\(\dfrac{2\sqrt{x}-9}{\left(\sqrt{x-3}\right)\left(\sqrt{x-2}\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) Tìm ĐKXĐ
b) Rút gọn biểu thức P
cho biểu thức P = \(\left(\frac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\frac{1-3\sqrt{a}+a}{a\sqrt{a}-1}-\frac{1}{\sqrt{a}-1}\right):\frac{a+1}{1-\sqrt{a}}\)
rút gọn P