\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
Ta có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
~ Chúc bn học tốt ~
*Sóc* Nhí *Nhảnh *
11⋅2" id="MathJax-Element-1-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">12⋅3" id="MathJax-Element-2-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">+13⋅4" id="MathJax-Element-3-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">+...+149⋅50" id="MathJax-Element-4-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">
+\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+........+\dfrac{1}{49.50}\)
\(A=1.\left(1-\dfrac{1}{50}\right)\)
\(A=1.\dfrac{49}{50}\)
\(A=\dfrac{49}{50}\)
Ta thấy:
\(\dfrac{1}{1.2}\) = \(1-\dfrac{1}{2}\);\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);\(\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\); .... ; \(\dfrac{1}{49.50}=\dfrac{1}{49}-\dfrac{1}{50}\)
Từ đó suy ra:
A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow\) A = 1 - \(\dfrac{1}{50}\)
\(\Rightarrow\)A = \(\dfrac{49}{50}\)
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
A=\(\dfrac{1}{1}-\dfrac{1}{50}\)
A=\(\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(CM:\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
Ta có :
A= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
A=\(1-\dfrac{1}{50}=\dfrac{49}{50}\)
~ chúc bn học tốt~