b)\(B=\dfrac{3}{2}+\dfrac{13}{12}+\dfrac{31}{30}+...+\dfrac{9901}{9900}\)
\(=1+\dfrac{1}{2}+1+\dfrac{1}{12}+1+\dfrac{1}{30}+...+1+\dfrac{1}{9900}\)
\(=1+1+1+...+1\left(50cs\right)+\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=50+\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)
\(C=\dfrac{5}{6}+\dfrac{19}{20}+\dfrac{41}{42}+...+\dfrac{10099}{10100}\)
\(=\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{20}\right)+\left(1-\dfrac{1}{42}\right)+...+\left(1-\dfrac{1}{10100}\right)\)
\(=1+1+...+1\left(50cs\right)-\dfrac{1}{6}-\dfrac{1}{20}-\dfrac{1}{42}-...-\dfrac{1}{10100}\)
\(B-C=\left(50+\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)-\left(50-\dfrac{1}{6}-\dfrac{1}{20}-...-\dfrac{1}{10100}\right)\)
\(=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
Chúc Bạn Học Tốt và Đạt nhiều thành tích tốt !!!