a/ \(\dfrac{3}{2}\left(x-\dfrac{5}{3}\right)+\dfrac{4}{5}=x+1\)
\(\Rightarrow\dfrac{3}{2}x-\dfrac{5}{2}-x=1+\dfrac{4}{5}\)
\(\Rightarrow\dfrac{3}{2}x-x=\dfrac{9}{5}+\dfrac{5}{2}\)
\(\Rightarrow\dfrac{1}{2}x=\dfrac{43}{10}\)
\(\Rightarrow x=\dfrac{43}{5}\)
b/ \(\dfrac{1}{6}\left(2x-3\right)=\dfrac{1}{2}\left(-x+\dfrac{1}{4}\right)-\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}=-\dfrac{1}{2}x+\dfrac{1}{8}-\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{3}x+\dfrac{1}{2}x=\dfrac{1}{8}-\dfrac{2}{3}+\dfrac{1}{2}\)
\(\Rightarrow\dfrac{5}{6}x=-\dfrac{1}{24}\Rightarrow x=-\dfrac{1}{20}\)
c/ làm như b
d/ \(\left(x-1\right)^4=\left(x-1\right)^6\)
\(\Rightarrow\left[{}\begin{matrix}x-1=-1\\x-1=0\\x-1=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)